

Continue with these lessons, you are required have a HC-06 Bluetooth Module (4 pins) or a long USB cable.

The Bluetooth module should be pre-programmed from Magicbits.

Learning Outcomes

- o Advanced programming in Scratch
- o Magicbit Tiny associated mini robotic and automated projects
- o Creative hands-on projects using simple craft materials

Lessons Outline

Lesson Number	Lesson Name			
01	Apple collector - Animated Game			
02	Bluetooth remote control car			
03	Obstacle avoiding robot car			
04	Line follower robot car			
05	Roach Robot			
06	Dancing Robot			
07	Automatic water tap			
08	Fire fighter			

01. Introduction to Scratch

Animating few sprites to make a simple game

- Learning Outcomes
 - o Recalling scratch programming basics Multiple sprites, multiple scripts
 - o Recalling Magicbit Tiny
- Materials Required
 - o Magicbit Tiny Board
 - o Tiny Extension board
 - o Battery with holder
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/8orzRLIdcXQ
- STEP 01 Connect the Tiny extension with the Magicbit Tiny board and then the Bluetooth module to the extension board. Then connect the battery to the battery connector in the extension board and turn ON the switch.

STEP 02 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny via Bluetooth

o Help Guide – <u>Bluetooth Connection.pdf</u>

STEP 03 Get the necessary sprites and backdrop for the game - apple collector

STEP 04 Make the programs for the sprites separately.

 For the "Bowl" sprite - To move it along the stage using the tiny buttons

when 🏴	clicked					
go to x:	0 y:	-125				
	\odot		left 🗸		tton	
move	-10	steps		1		1
	\odot	Read	right ·	•	lutton	n
move	10	steps				,
		۶				

- o For the "Apple" sprite
 - To start with a random position in top of the stage

😵 magicbit

• To make the apple fall down and come back to the top if it reaches the lower edge of the stage

• To update the score when the apple touches the bowl

02. Bluetooth-Remote Controlling Car

Make a robot car which can control via Bluetooth

- Learning Outcomes
 - o Bluetooth-Remote Controlling technique
 - o Robotics Basics

- o Magicbit Tiny Board
- o Computer with Internet Connection
- o MagicCode Platform
- o Wooden Robot platform
- o Bluetooth Module
- o Battery connector with batteries
- ✦ Steps for the Activity
 - o Expected Output https://youtu.be/RYpIK_Ey0MU
 - STEP 01 Assemble the Tiny Robot using the provided the wooden parts
 - Use the below video for the robot assembling steps
 Robot Assembling Guide <u>https://youtu.be/2kMGVRj7NBk</u>
 - **STEP 02** Turn the switch ON in the Tiny Extension board.

STEP 03 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny via Bluetooth

- o Help Guide <u>Bluetooth Connection.pdf</u>
- **STEP 04** Make a simple program to control the motors
 - o Make sure to keep the speed of the motors in between 100 250

Make a program to move the robot in all directions when the arrow keys in the keyboard are pressed.

when up arrow - key pressed	when right arrow - key pressed
Run Motor 1 - at Speed 150	Run Motor 1 • at Speed 50
Run Motor 2 - at Speed 150	Run Motor 2 - at Speed 150
when left arrow - key pressed	when space - key pressed
Run Motor 1 • at Speed 150	Run Motor 1 - at Speed 0
Run Motor 2 - at Speed 50	Run Motor 2 • at Speed 0

03. Obstacle Avoiding Robot Car

Make a robot car which can move itself by avoiding the obstacles

- Learning Outcomes
 - o Obstacle avoiding technique
 - o Robotics Basics
- Materials Required
 - o Magicbit Tiny Board
 - o Tiny Extension board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden Robot platform
 - o Bluetooth Module
 - o Battery connector with batteries

Steps for the Activity : Use the same robot assembled in Lesson 02

o Expected Output - https://youtu.be/LPN8Rmhk8iM

STEP 01 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny via Bluetooth

- o Help Guide <u>Bluetooth Connection.pdf</u>
- **STEP 02** Understand the concept of avoiding obstacles

STEP 03 Make the program to get the distance measured by the ultrasonic sensor and display it on the stage.

STEP 04 Make the program to make the robot to avoid the obstacles and move

04. Line Following Robot Car

Make a robot car which can move along a black line on a white surface following the line.

- Learning Outcomes
 - o Obstacle avoiding technique
 - o Robotics Basics
- Materials Required
 - o Magicbit Tiny Board
 - o Tiny extension board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden Robot platform
 - o Bluetooth Module
 - o Black track / line
 - o Battery connector with batteries
- Steps for the Activity : Use the same robot assembled above
 - o Expected Output https://youtu.be/nZds7kcdqco
- **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny via Bluetooth
 - o Help Guide <u>Bluetooth Connection.pdf</u>
- **STEP 02** Understand the concept used to follow the line.
 - Industrial usage of line follower robots <u>https://www.youtube.com/</u> watch?v=peOM_Nk4AEY

IR Proximity / Line Tracking Sensor

High Value of reflectance/voltage Low Value of reflectance/voltage

 Printable Black Track: <u>https://drive.google.com/file/d/1yxoFkhBaeNoNT</u> <u>SKU1nsgiqaljrb9AfOw/view?usp=sharing</u>

Impotent: This document is scaled to A2 size.

• If you use your own black track, make sure the thickness of the black track is **less than 2 cm**.

- **STEP 03** Make the program to check the readings of IR sensors in black and white surfaces.
 - o Make the code below
 - Keep the IR sensors on black and white surfaces and identify the values for both colors.

- **STEP 05** Make the program to follow the line by checking for the below conditions according to the IR sensor readings.
 - o If both sensors detect white move forward
 - o If left sensor detects white and right sensor detects black turn right
 - o If left sensor detects black and right sensor detects white turn left
 - o If both sensors detect black Stop motion

Note: The values used in below code may vary according to the light level in your background. Adjust the given values according to your readings from the IR sensors and try the program.

05. Roach Robot

Develop a mechanism to control the robot according the environmental light condition - Cockroach concept

- Learning Outcomes
 - o Practical application of the concepts
- Materials Required
 - o Magicbit Tiny Board
 - o Tiny Extension board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden Robot platform
 - o Bluetooth Module
- Steps for the Activity
 - o Expected Output https://youtu.be/hP4Kq4Hnfe0
- **STEP 01** Assemble the robot as guided below (same robot used in activities)
 - o Robot Assembling video https://youtu.be/2kMGVRj7NBk
- **STEP 02** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny via Bluetooth
 - o Help Guide <u>Bluetooth Connection.pdf</u>
 - o About the LDR
 - What is LDR LDR (Light Dependent Resistor) is a sensor which can be used to measure the light intensity in the environment.

06. Dancing Robot

Develop a mechanism to control the robot as it looks like dancing while generating different light patterns via Neo-pixel LED and some musical tones via the buzzer.

- Learning Outcomes
 - o Practical application of the concepts
- Materials Required
 - o Magicbit Tiny Board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden Robot platform
 - o Bluetooth Module
- Steps for the Activity
 - o Expected Output https://youtu.be/1p1UN6Dc_14
- **STEP 01** Assemble the robot as guided below (same robot used in activities)
 - o Robot Assembling video <u>https://youtu.be/2kMGVRj7NBk</u>
- **STEP 02** Flow of the program
 - o Make the robot to stop the motion when the space key is pressed.
 - o Make the buzzer to generate tones when any letter (eg:-M) is pressed
 - Make the robot to move in different directions while making different color lights in Neo-pixel LED.

STEP 03 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny via **Bluetooth Mode**

o Help Guide - <u>Bluetooth Connection.pdf</u>

STEP 04 Make the code to stop the robot's motion when the space key is pressed

- STEP 05 Make the code to hear the tones through the buzzer when any letter (eg:-M) is pressed.
 - o Make any tone but don't change the time below 1 second

STEP 06 Make the code to move the robot in different directions while making different color lights in Neo-pixel LED.

You can make this code to run in a loop by keeping all these blocks in a "forever" block.

07. Automatic Water Tap

Develop a system that functions as a water tap which operates automatically.

- Learning Outcomes
 - o Practical application of the concepts
 - o Servo motor operation
 - o IR proximity sensor readings
- Materials Required
 - o Magicbit Tiny Board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden Servo setup
 - o Bluetooth Module
 - o Rubber tube
 - o Plastic bottle / small container
 - o Empty container to collect water
 - o Servo Motor
 - o Battery connector with batteries
- Steps for the Activity
 - o Expected Output https://youtu.be/aVyoYc11diQ

STEP 01 Create the set-up as in the given assembly guide.

o Set-up Assembly guide - https://youtu.be/WQjZGKnaChQ

Important: Fix the Magicbit tiny in an up-side-down way and the tiny extension accordingly.

STEP 02 Connect the Bluetooth module to the Tiny extension as below.

- **STEP 03** Understand the flow of the program
 - Given rubber tube / saline tube is taking the water our from the water container (Can use a plastic water bottle as the container).
 - One end of the rubber tube is inserted to the water container and the other end is taken through the wooden arm connected to the servo motor.
 - Servo motor is operated into two different angles which makes the rubber tube to fold while stopping the water flow and to continue the water flow.
 - o This will happen according to the presence of hands.
 - Presence of hands are detected using the Proximity IR sensors in the Magicbit Tiny board.
 - When the hands are detected, the servo motor should rotate into the water flowing angle and when the hands are removed (not detected) servo should rotate back to the water flow stopping angle.

STEP 04 Measure the necessary servo angles.

- o For water pouring / outgoing position
- o For stopping the water flow

• Change the value at "Angle" different values in the range 0 -180 and get the necessary angles for above.

Get the readings from two IR proximity sensors and decide the threshold value to detect the presence of hands.

STEP 06 Make the final program to operate the servo into necessary angles according to the readings from the IR sensors.

08. Fire Fighter Robot

Note: To continue this lesson, few external components are required which are not included in the Magicbit Tiny Kit

ACTIVITY 08

Develop a program to activate the fan connected DC motor as fire extinguisher when a fire is deleted using the IR proximity sensors.

- o Practical application of the concepts
- Materials Required
 - o Magicbit Tiny Board
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Wooden platform
 - o Bluetooth Module
 - o DC motor Get externally
 - o Plastic fan blade Get externally
- Steps for the Activity
 - o Expected Output https://youtu.be/UQOP2HUw_5A
- **STEP 01** Make the set up as in the above video.
- **STEP 02** Connect the Set up MagicCode via Bluetooth.
- **STEP 03** Understand the mechanism used
 - o Detects the fire / flame via Proximity IR sensors
 - o Use a candle / lighter as the fire
 - o When the fire is detected, the DC will automatically start to rotate.

- As a result the plastic fan blade connected to the DC motor will rotate to extinguish the fire.
- When the fire get extinguished, the DC motor will automatically stop rotating.
- **STEP 04** Make the program to get the readings of the IR sensors when the fire is detected.

STEP 05 Make the final program to operate the DC motor when the fire is detected.

