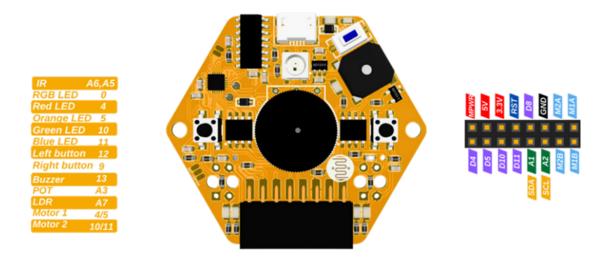
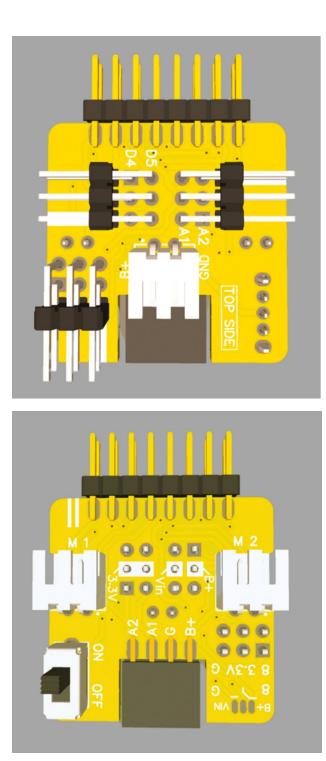

Learning Outcomes

- o Basic programming in Scratch
- o Magicbit Tiny associated activities
- o Creative hands-on projects using simple craft materials


Lessons Outline

Lesson Number	Lesson Name
01	Introduction to Scratch
02	Light Show
03	Move Sprites
04	Dimmer Magic
05	Secret Message
06	Day - Night Predictor
07	Night Light
08	Anti-theft + fire detector
09	Automatic Rail gate
10	People Count
11	DIY Sensor



Magicbit Tiny Pinout

Tiny Extension Pinout

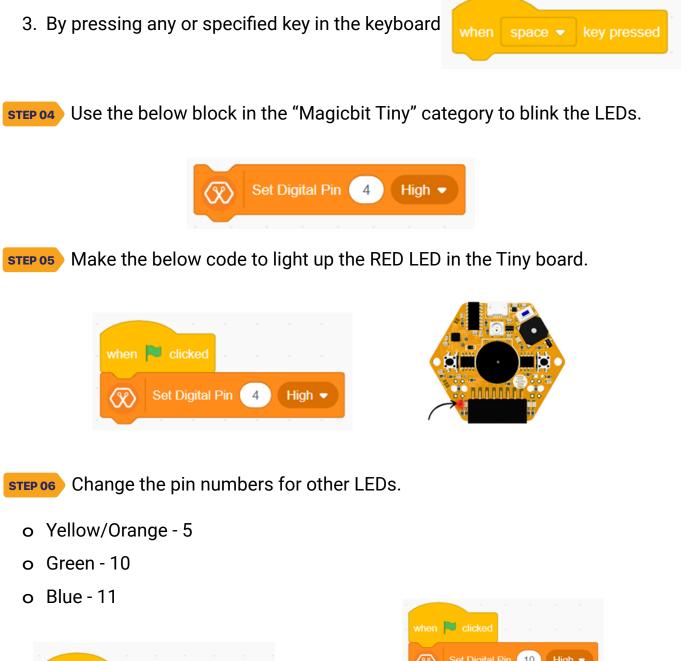
01. Introduction to Scratch

Simple scratch program to blink LEDs

Learning Outcomes

- o Scratch / MagicCode Platform
- o Basics of the Scratch programming
- o LED controlling with digital signals

Materials Required


- o Magicbit Tiny Board
- o USB cable
- o Computer with Internet Connection
- o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/5diwtSEepAA
 - STEP 01 Get into the MagicCode platform MagicCode 3.0
 - STEP 02 Connect the Magicbit Tiny to the computer and with MagicCode via USB Help Guide - <u>https://youtu.be/pTwA3AFiCVA</u>

STEP 03 Use one of the program running methods in Scratch "Events" category

😵 magicbit

- 1. By clicking on the "Green Flag".
- 2. By clicking on the **sprite** in the stage.

02. Light Show

Scratch programming to create light patterns

- Learning Outcomes
 - o "Loops" in programming
 - o Patterns from LEDs
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/ZYS_e6YxRCg
 - STEP 01 Get into the MagicCode platform MagicCode 3.0
 - STEP 02 Connect the Magicbit Tiny to the computer and with MagicCode via USB Help Guide - <u>https://youtu.be/pTwA3AFiCVA</u>
 - **STEP 03** Make the program to turn on all 4 LEDs and then turn off them after few seconds

STEP 04 Try different Patterns - https://youtu.be/J8UhgEjXZqg

03. Move Sprites

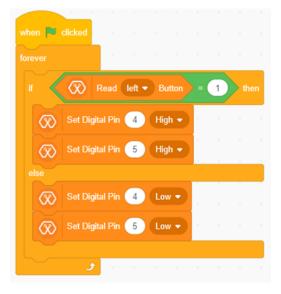
Simple scratch program to control sprites with Magicbit Tiny push buttons

- Learning Outcomes
 - o Functioning of the push buttons
 - o Handling sprites in scratch with push buttons
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/vCxX03kPwR4
- Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
- STEP 02 Push buttons in Magicbit Tiny

Pin numbers

- o Right button pin 9
- o Left button pin 12
- o The block which uses to handle the push buttons in tiny

- o When the button pressed True
- o When button is not pressed False

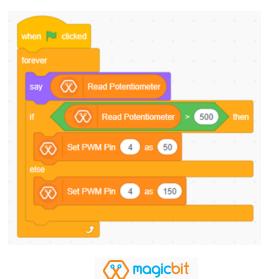

STEP 04 Make the below code for any sprite to move it along the stage using push buttons in the Magicbit Tiny

when 💌 clicke	d a a					
set rotation style	left-right	t 🕶				
forever	1					
if 🐼	Read	left 🔻	But	ton	then	1
point in direc	tion -90					
move 10	steps					
						,
if < 🐼	Read	right 🔻	B	utton	> the	n
point in direc	tion 90			,		
move 10	steps					
			÷.	÷.	÷.	Í
	٠					

STEP 05 Create a program to control the LEDs using push buttons

o LEFT side LEDs (Red and Orange) when the Left Push button is pressed.

o RIGHT side LEDs (Blue and Green) when the Right Push button is pressed.



04. Dimmer Magic

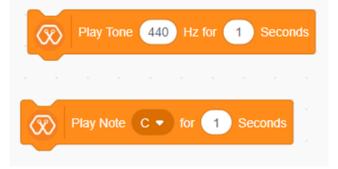


Create a simple program to control the brightness of the LEDs using the Potentiometer

- Learning Outcomes
 - o Practical applications of basic electronic circuits
 - o Creativity and Innovation
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- ✦ Steps for the Activity
 - o Expected Output https://youtu.be/LWfj0KK7BGE
 - **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
 - **STEP 02** Make the below program to control the brightness of the on-board red LED according to the Potentiometer value

STEP 03 Update above program to control all 4 LEDs

05. Morse Code Messaging



Create a simple program to control the brightness of the LEDs using the Potentiometer

- Learning Outcomes
 - o Practical applications of basic electronic circuits
 - o Creativity and Innovation
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/J1nFBHAuzAg

STEP 01 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny

STEP 02 These are the blocks which can be used to function the buzzer

STEP 03 Create a program for a simple musical piece using above blocks as follows

Make the code to display a pattern in the LEDs while making a different tone for each output.

06. Day / Night Predictor

Create a simple program for an scratch animation to indicate day and night according to the environmental light condition

- Learning Outcomes
 - o Creativity and Innovation
 - o Functioning of the LDR
 - o Animations in scratch
- ✦ Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/0czwEVSYptU
- **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
- **STEP 02** Make the scratch animation background which looks like a day time and night time
 - o Add any backdrop which looks like Day Time (Eg:- Colorful City)
 - o Add any backdrop which looks like the Night time (Eg:- Night City)

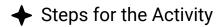
o Delete the default sprite and select a suitable sprite

About the LDR

- What is LDR LDR (Light Dependent Resistor) is a sensor which can be used to measure the light intensity in the environment.
- The below block in the "Magicbit Tiny" category can be used to get the readings from the Magicbit Tiny LDR.

Make a simple program to get the reading from Magicbit Tiny LDR and display it on the MagicCode stage.

STEP 04 Update the above program to switch between the backdrops selected earlier according to the LDR reading.



07. Night Light

Create a simple program to activate a light bulb (LED / RGB) according to the environmental light condition

- Learning Outcomes
 - o Practical applications of basic electronic circuits
 - o Creativity and Innovation
 - o Functioning of the LDR
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform

o Expected Output - https://youtu.be/g1bGuv1lukQ

STEP 01 Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny

STEP 02 Make a program to read the light condition inside your room

STEP 03 Update the program to activate the RGB LED in the Magicbit Tiny according to the measured LDR value.

o These are the blocks used in MagicCode to activate RGB LED

o Make the program and test

when 🏴 clicked						
forever						
say 🛞 Read I	DR					
if 🐼 Re	ad LDR	< 4	100	the	en	
	lor 🔵	at Pi	n	In	dex	1
else						
NeoPixel Co	lor	at Pi	n ()) In	dex	1

o Adjust the program for different colors in different LDR reading ranges

08. Anti-Theft

Create a simple program to activate an alarm from the buzzer when a movement is detected by the IR sensors

- Learning Outcomes
 - o Practical applications of the concepts
 - o Creativity and Innovation
 - o Functioning of the proximity IR sensors
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/NEFo_9V7h3s

Get into the MagicCode platform - <u>MagicCode 3.0</u> and connect Magicbit Tiny

Proximity IR sensors

- o In back side of the Magicbit Tiny
- o Connected to pin A5 and A6
- o The block used in MagicCode for IR sensor reading is,

STEP 02 Make a program to get the readings from both IR sensors in the Magicbit Tiny

o Add two sprites

o Make the program as one sprite to display the reading from one IR sensor

when 💌 clicked	when 📕 clicked
forever	forever end of the second s
say 🛞 Read Analog Pin A5 -	say 🐼 Read Analog Pin A6 🕶

STEP 03 Update the above program (use only one sprite) to activate the buzzer according to the readings from IR sensors

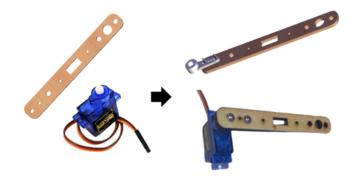
o Here the "AND" and "OR" operators can be used.

o Use AND operator and make the program

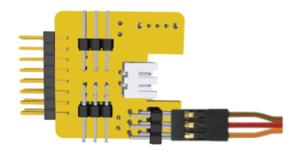
ever											
	1	nalog P		> 50	\sim	nd <	Read				> ti
\sim	Read A	laivy i			//						
Play No	Read A										
Play No lse											

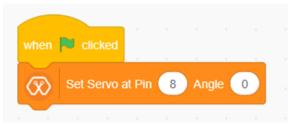
Try - Update the program to make a fire detector

- o IR sensors for detection
- o Change the conditions for IR readings


09. Rail Gate

Create a simple program to activate the servo motor as the rail gate when as motion detected by the Proximity IR sensors


- Learning Outcomes
 - o Practical applications of the concepts
 - o Creativity and Innovation
 - o Functioning of the proximity IR sensors
 - o Functioning of the servo motors
- Materials Required
 - o Magicbit Tiny Board
 - o Tiny extension module
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o Servo motor
- ✦ Steps for the Activity
 - o Expected Output https://youtu.be/gxgTAXWFNac
 - **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
 - **STEP 02** Fix the wooden servo arm with the servo motor (Here the wooden arm works as the rail gate)



Connect the servo motor cable with tiny extension pin 8

- STEP 04 Connect the extension module with the Magicbit
- **STEP 05** Power the Extension with the battery while the Magicbit Tiny is connected to the computer via USB
- STEP 06 Make the below program to figure out the required servo motor angles.
 - o Enter the pin number as 8
 - o Check with different angles from 0 180

STEP 07 Make the program to operate the servo motor according to the motion detected by the IR proximity sensor in the Magicbit Tiny.

10. People Count

Create a simple program to count the no.of people (motions) entering through a door and going out from the door when a motion is detected by the Proximity IR sensors.

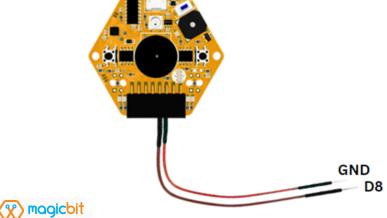
- Learning Outcomes
 - o Practical applications of the concepts
 - o Creativity and Innovation
 - o Functioning of the proximity IR sensors
 - o Variables in programming
- ✦ Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
- Steps for the Activity
 - o Expected Output https://youtu.be/c93mD88_Z3g
 - **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
 - **STEP 02** Make the scratch interface by adding a suitable backdrop and sprite

STEP 03 Create two variables as "People In" and "People Out"

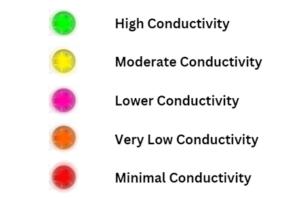
Variables		
Make a Variable		
		People In 0
my variable		
People In		People Out
People Out		
	🚫 magicbit	

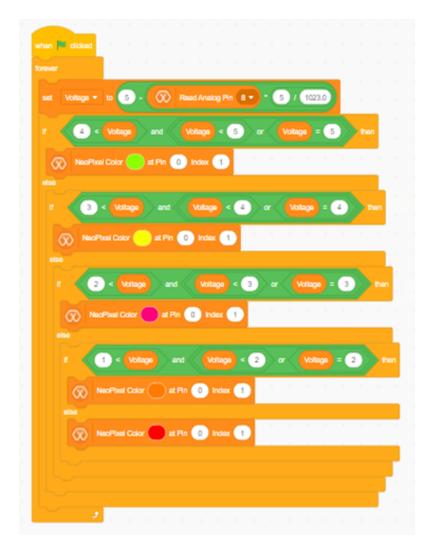
STEP 04 Make the program to update the created variables according to the motions from IR sensors.

when	clicked	· ·						
forever								
if		Read	Analog	, Pin	A5 •	<	700	then
ch	ange Pec	ople In 🔻	ьу	1				
0	Play 1	Note C	• for	0.5	Se	conds		
wa	it 2 s	econds						
if		> Read	Analoc	Pin	AB 1		700	then
	ange Pec							
	ange Pec							
6	Play 1	Note C	• for	0.5	Se	conds		
wa	it 2 s	econds						
		¢ "						



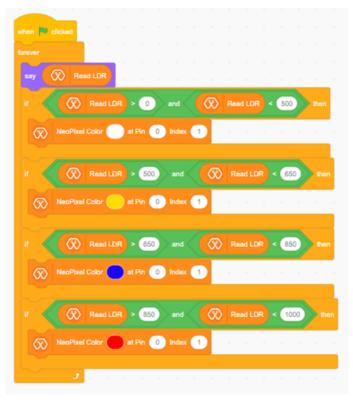
11. DIY Sensors




Create a simple program to indicate the conductivity of different materials as a Neo-pixel indicator using the Magicbit Tiny.

- Learning Outcomes
 - o Practical applications of the concepts
 - o Creativity and Innovation
 - o Functioning of RGB LEDs
- Materials Required
 - o Magicbit Tiny Board
 - o USB cable
 - o Computer with Internet Connection
 - o MagicCode Platform
 - o M-M jumper cables
 - o Different types materials (Paper, rubber, metal, copper)
- Steps for the Activity
 - o Expected Output https://youtu.be/eSGc3KKRulE
 - **STEP 01** Get into the MagicCode platform <u>MagicCode 3.0</u> and connect Magicbit Tiny
 - STEP 02 Connect one jumper wire to the ground pin and one jumper wire to the D8 pin of the Tiny board.

STEP 03 Make the program to indicate the conductivity level in different colors of the RGB.


Magicbit

- Create a program to indicate the different moisture levels in the soil using the Neopixel indicator in the Magicbit Tiny.
 - o Same program and same set up as in Activity 01 above.
 - Insert the free ends of the jumper cables to a soil sample to get the results through Neo-pixel (RGB) LED.

- Create a simple program to detect the ambient light's color using LDR and display it through a Neo-Pixel RGB LED using the Magicbit Tiny.
 - Make the below program to get the ambient light values from the LDR and according to those values, control the RGB color

