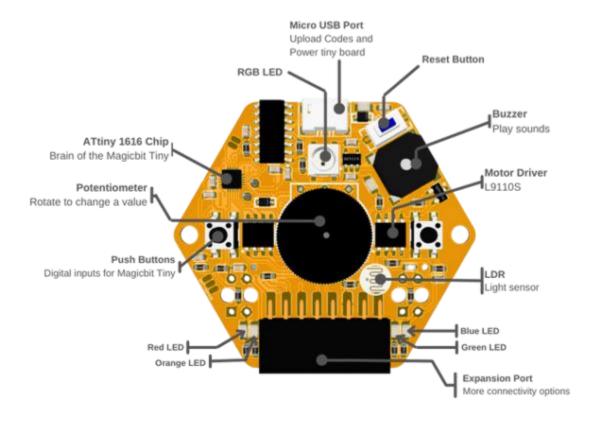
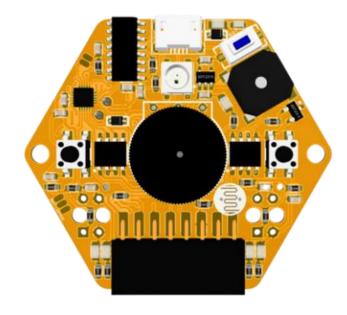
Magicbit Tiny with Scratch


Learning Outcomes: -

- o Basic programming in Scratch
- o Magicbit Tiny associated activities
- o Creative hands-on projects using simple craft materials

• Lessons Outline


Lesson Number	Lesson Name
01	Introduction to Scratch
02	Light Show
03	Move Sprites
04	Dimmer Magic
05	Secret Message
06	Day - Night Predictor
07	Night Light
08	Anti-theft + fire detector
09	Automatic Rail gate
10	People Count
11	DIY Sensor

Magicbit Tiny Layout

Magicbit Tiny Pinout

01 - Introduction to Scratch

- Activity
 - Simple scratch program to blink LEDs in Magicbit Tiny
- Learning Outcomes
 - Scratch / MagicCode Platform
 - Basics of the Scratch programming
 - LED controlling with digital signals
- Materials Required
 - Magicbit Tiny Board
 - USB cable
 - Computer with Internet Connection
 - MagicCode Platform
- Steps for the Activity

Expected Output - https://youtu.be/5diwtSEepAA

- Step 01 Get into the MagicCode platform → MagicCode 3.0
- Step 02 Connect the Magicbit Tiny to the computer and with MagicCode via USB
 - Help Guide https://youtu.be/pTwA3AFiCVA
- Step 03 Use one of the program running methods in Scratch "Events" category
 - 1. By clicking on the "Green Flag"

2. By clicking on the **sprite** in the stage

3. By pressing any or specified key in the keyboard

• Step 04 - Use the below block in the "Magicbit Tiny" category to blink the LEDs.

o Step 05 - Make the below code to light up the RED LED in the Tiny board

- Step 06 Change the pin numbers for other LEDs
 - Yellow/Orange 5
 - Green 10
 - Blue 11

• **Step 07 -** Change the status to off the LEDs

02 - Light Show

- Activity
 - Scratch programming to create light patterns
- Learning Outcomes
 - "Loops" in programming
 - Patterns from LEDs
- Materials Required
 - Magicbit Tiny Board
 - USB cable
 - Computer with Internet Connection
 - MagicCode Platform
- Steps for the Activity

Expected Output - https://youtu.be/ZYS_e6YxRCg

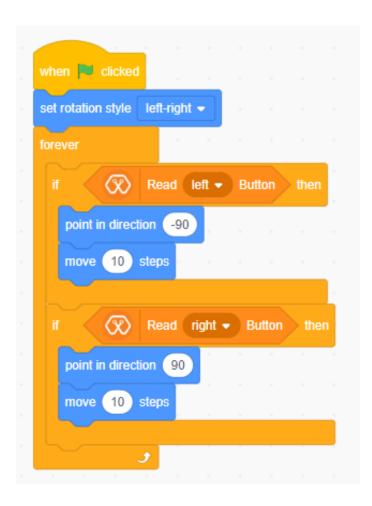
- Step 01 Get into the MagicCode platform → MagicCode 3.0
- Step 02 Connect the Magicbit Tiny to the computer and with MagicCode via USB
 - Help Guide https://youtu.be/pTwA3AFiCVA
- Step 03 Make the program to turn on all 4 LEDs and then turn off them after few seconds


Step 06 - Try different Patterns - https://youtu.be/J8UhgEjXZqg

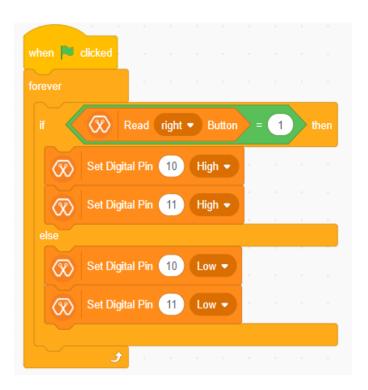
03 - Move Sprites

- Activity
 - Simple scratch program to control sprites with Magicbit Tiny push buttons
- Learning Outcomes
 - Functioning of the push buttons
 - Handling sprites in scratch with push buttons
- Materials Required
 - Magicbit Tiny Board
 - USB cable
 - Computer with Internet Connection
 - MagicCode Platform
- Steps for the Activity

Expected Output - https://youtu.be/vCxX03kPwR4


- Step 01 Get into the MagicCode platform → MagicCode 3.0 and connect Magicbit
 Tiny
- Step 02 Push buttons in magicbit tiny
 - Pin numbers
 - Right button pin 9
 - Left button pin 12
 - The block which uses to handle the push buttons in tiny

- Step 03 Run block and see how the readings vary with the button pressings
 - When the button pressed True
 - When button is not pressed false


 Step 04 - Make the below code for any sprite to move it along the stage using push buttons in the Magicbit Tiny

- Step 05 Create a program to control the LEDs using push buttons
 - LEFT side LEDs (Red and Orange) when the Left Push button is pressed.

■ RIGHT side LEDs (Blue and Green) when the Right Push button is pressed.

04 - Dimmer Magic

Activity

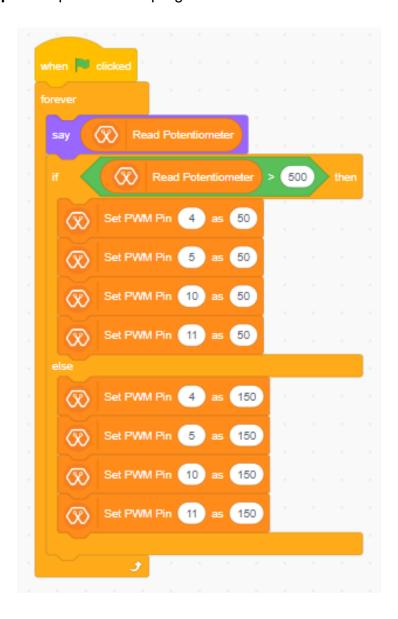
 Create a simple program to control the brightness of the LEDs using the Potentiometer

Learning Outcomes

- Practical applications of basic electronic circuits
- Creativity and Innovation

Materials Required

- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform


Steps for the Activity

Expected Output – https://youtu.be/LWfj0KK7BGE

- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit
 Tiny
- Step 02 Make the below program to control the brightness of the on-board red LED according to the Potentiometer value

Step 03 - Update above program to control all 4 LEDs

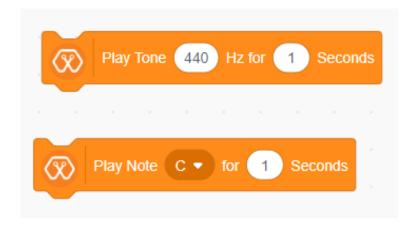
05 - Morse Code Messaging

Activity

 Create a simple program to display a password / morse code using LEDs and sound output using buzzer

Learning Outcomes

- Practical applications of basic electronic circuits
- Creativity and Innovation
- Functioning of the Buzzer


Materials Required

- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform

Steps for the Activity

Expected Output - https://youtu.be/J1nFBHAuzAg

- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit
 Tiny
- Step 02 These are the blocks which can be used to function the buzzer

 Step 03 - Create a program for a simple musical piece using above blocks as follows

 Step 04 - Make the code to display a pattern in the LEDs while making a different tone for each output.

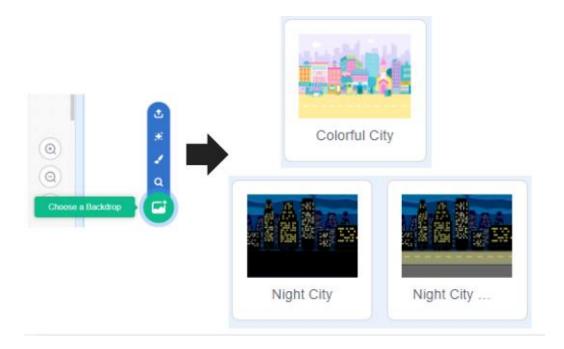
06 - Day / Night Predictor

Activity

 Create a simple program for an scratch animation to indicate day and night according to the environmental light condition

Learning Outcomes

- Creativity and Innovation
- Functioning of the LDR
- Animations in scratch


Materials Required

- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform

Steps for the Activity

Expected Output - https://youtu.be/0czwEVSYptU

- Step 01 Get into the MagicCode platform → MagicCode 3.0 and connect Magicbit Tiny
- Step 02 Make the scratch animation background which looks like a day time and night time
 - Add any backdrop which looks like Day Time (Eg:- Colorful City)
 - Add any backdrop which looks like the Night time (Eg:- Night City)

Delete the default sprite and select a suitable sprite

About the LDR

- What is LDR LDR (Light Dependent Resistor) is a sensor which can be used to measure the light intensity in the environment.
- The below block in the "Magicbit Tiny" category can be used to get the readings from the Magicbit Tiny LDR

 Step 04 - Make a simple program to get the reading from Magicbit Tiny LDR and display it on the MagicCode stage

 Step 05 - Update the above program to switch between the backdrops selected earlier according to the LDR reading

07 - Night Light

Activity

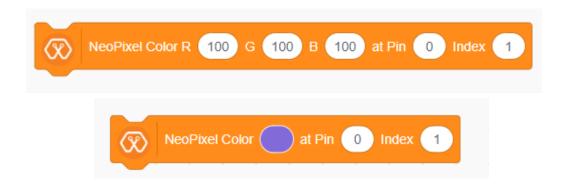
 Create a simple program to activate a light bulb (LED / RGB) according to the environmental light condition

Learning Outcomes

- Practical applications of basic electronic circuits
- Creativity and Innovation
- Functioning of the LDR

Materials Required

- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform


Steps for the Activity

Expected Output - https://youtu.be/g1bGuv1lukQ

- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit Tiny
- Step 02 Make a program to read the light condition inside your room

- Step 04 Update the program to activate the RGB LED in the Magicbit Tiny according to the measured LDR value.
 - These are the blocks used in MagicCode to activate RGB LED

■ Make the program and test

■ Adjust the program for different colors in different LDR reading ranges

08 - Anti-Theft

Activity

 Create a simple program to activate an alarm from the buzzer when a movement is detected by the IR sensors

Learning Outcomes

- Practical applications of the concepts
- Creativity and Innovation
- Functioning of the proximity IR sensors

Materials Required

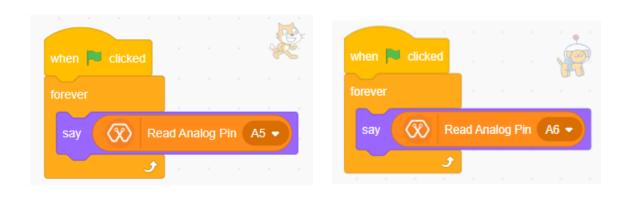
- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform

Steps for the Activity

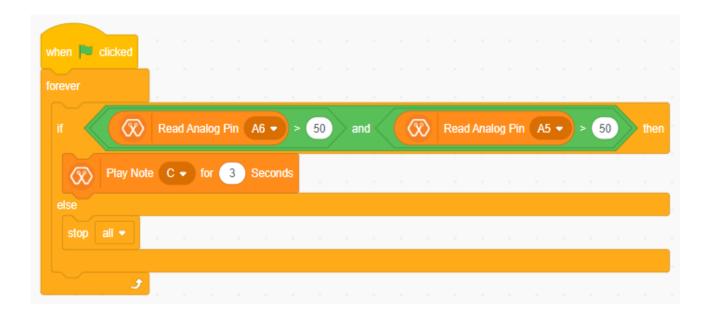
Expected Output - https://youtu.be/NEFo_9V7h3s

 Step 01 - Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit Tiny

Proximity IR sensors


- In back side of the Magicbit Tiny
- Connected to pin A5 and A6
- The block used in MagicCode for IR sensor reading is,

- Step 03 Make a program to get the readings from both IR sensors in the Magicbit Tiny
 - Add two sprites


■ Make the program as one sprite to display the reading from one IR sensor

- Step 04 Update the above program (use only one sprite) to activate the buzzer according to the readings from IR sensors
 - Here the "AND" and "OR" operators can be used.

Use AND operator and make the program

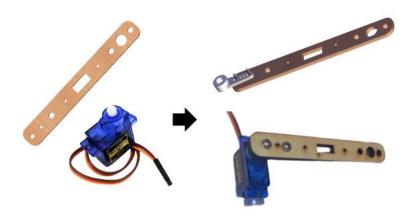
- Try Update the program to make a fire detector
 - o IR sensors for detection
 - Change the conditions for IR readings

09 - Rail Gate

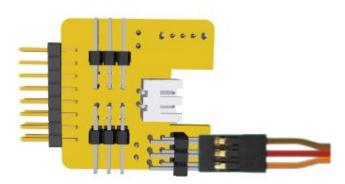
Activity

 Create a simple program to activate the servo motor as the rail gate when as motion detected by the Proximity IR sensors

Learning Outcomes


- Practical applications of the concepts
- Creativity and Innovation
- Functioning of the proximity IR sensors
- Functioning of the servo motors

Materials Required


- Magicbit Tiny Board
- Tiny extension module
- USB cable
- Computer with Internet Connection
- MagicCode Platform
- Servo motor
- Steps for the Activity

Expected Output - https://youtu.be/gxgTAXWFNac


- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit
 Tiny
- Step 02 Fix the wooden servo arm with the servo motor (Here the wooden arm works as the rail gate)

Step 03 - Connect the servo motor cable with tiny extension pin 8

- Step 04 Connect the extension module with the Magicbit
- Step 05 Power the Extension with the battery while the Magicbit Tiny is connected to the computer via USB
- Step 08 Make the below program to figure out the required servo motor angles.
 - Enter the pin number as 8
 - Check with different angles from 0 180

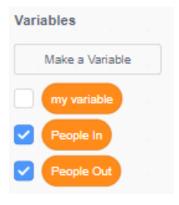
 Step 09 - Make the program to operate the servo motor according to the motion detected by the IR proximity sensor in the Magicbit Tiny.

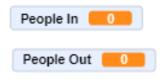
Lesson 10 - People Count

Activity

 Create a simple program to count the no.of people (motions) entering through a door and going out from the door when a motion is detected by the Proximity IR sensors.

Learning Outcomes


- Practical applications of the concepts
- Creativity and Innovation
- Functioning of the proximity IR sensors
- Variables in programming

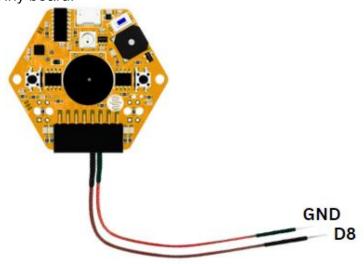

Materials Required

- Magicbit Tiny Board
- USB cable
- Computer with Internet Connection
- MagicCode Platform
- Steps for the Activity

Expected Output - https://youtu.be/c93mD88_Z3g

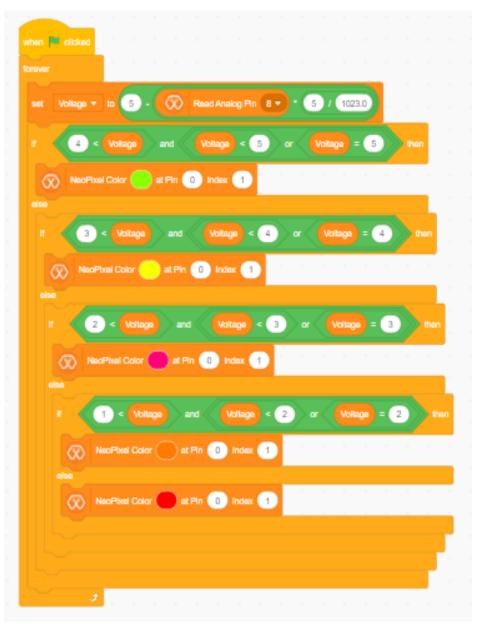
- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit
 Tiny
- Step 02 Make the scratch interface by adding a suitable backdrop and sprite
- Step 03 Create two variables as "People In" and "People Out"

 Step 04 - Make the program to update the created variables according to the motions from IR sensors



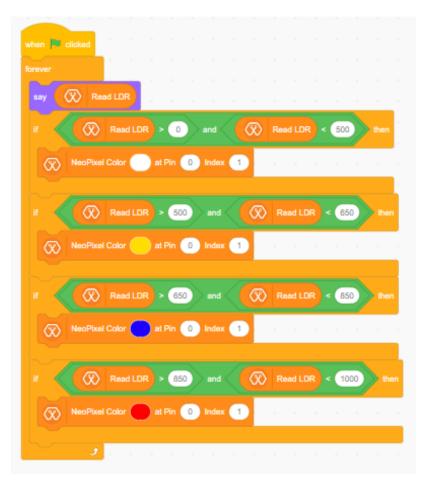
Lesson 11 - DIY Sensors

- Activity 01 DIY Conductivity Sensor
 - Create a simple program to indicate the conductivity of different materials as a Neopixel indicator using the Magicbit Tiny.
- Learning Outcomes
 - Practical applications of the concepts
 - Creativity and Innovation
 - Functioning of RGB LEDs
- Materials Required
 - Magicbit Tiny Board
 - USB cable
 - Computer with Internet Connection
 - MagicCode Platform
 - M-M jumper cables
 - Different types materials (Paper, rubber, metal, copper)
- Steps for the Activity


Expected Output - https://youtu.be/eSGc3KKRuIE

- Step 01 Get into the MagicCode platform → <u>MagicCode 3.0</u> and connect Magicbit Tiny
- Step 02 Connect one jumper wire to the ground pin and one jumper wire to the D8 pin of the Tiny board.

Step 03 - Make the program to indicate the conductivity level in different colors of the RGB.


Activity 02 - DIY Soil Sensor

- Create a program to indicate the different moisture levels in the soil using the Neopixel indicator in the Magicbit Tiny.
 - Same program and same set up as in Activity 01 above.
 - Insert the free ends of the jumper cables to a soil sample to get the results through Neo-pixel (RGB) LED.

0

Activity 03 - DIY Color Sensor

- Create a simple program to detect the ambient light's color using LDR and display it through a Neo-Pixel RGB LED using the Magicbit Tiny.
 - Step 01 Make the below program to get the ambient light values from the LDR and according to those values, control the RGB color.

